
DASN (ELM)'s IUID Education and Training Series

Item Unique Identification (IUID)
201

1

IUID Center Representative
NSWC Corona, IUID Center

28 March 2013

Housekeeping

2

• Please mute your telephone

• Please use the chat box for questions which are critical
to the understanding of the presentation

• Please submit any question not requiring immediate
attention to iuid.helpdesk@dla.mil

• Questions will be answered as time permits

mailto:iuid.helpdesk@dla.mil

Schedule

3

• IUID and the Data Matrix

• Encoding Data into a Barcode
• Error Correction and Recovering Data

• Drawing the Data Matrix

• When is a Data Matrix Not an IUID

• Printing a Barcode

• Choosing and Using Barcode Readers

Item Unique Identification (IUID)

 IUID is a system of marking items with globally unique
Unique Item Identifiers (UIIs) that distinguish them

from all other like and unlike items

4

IUID is mandated within the DoD for all new item acquisitions,
items the government already owns (legacy items), and

government furnished property (GFP) meeting specific criteria

Most simply, IUID requires items to be
permanently, uniquely identified with a UII and
to have that UII encoded into a data matrix
barcode marked on the item

Why the Data Matrix?

for marking small parts

Error Correction: ~50%

Capacity:
Up to 2,335

alphanumeric

characters

Multiple ways

to make

your mark

Schedule

6

• IUID and the Data Matrix

• Encoding Data into a Barcode
• Error Correction and Recovering Data

• Drawing the Data Matrix

• When is a Data Matrix Not an IUID

• Printing a Barcode

• Choosing and Using Barcode Readers

Encoding Example

• To illustrate how data and error correction gets
into a data matrix, we choose to encode the
data “3R60”.

• This is done by first converting the data to a
numeric form by using its ASCII representation.

7

The ASCII Table

8

The ASCII Table

9
“3” = 51 “R” = 82 “6” = 54 “0” = 48

ASCII Encoding

• We will be compressing our data by using one
of 6 algorithms.* (We choose to use ASCII encoding for

this example which is the default method and especially good
for digits.)

• Take the ASCII value and add 1 to it unless it is
a digit next to another digit.

• For digits next to each other, take their value
as a pair and add 130.

10 * ASCII, C40, Text, Base256, EDIFACT, X12

“3” = 51+1 = 52 “R” = 82+1 = 83 “60” + 130 = 190

So the data to encode into our data matrix is 52, 83, and 190

Encoding Example

• The next thing to do is find a Data Matrix that can
accommodate our data.

• There are 24 different square and 6 different
rectangular data matrices to choose from. Each of
them can hold our data consisting of 3 numbers. We
choose the smallest one – a 10x10 data matrix. (In
general, the amount of data determines the size of
the data matrix used.)

• The 10x10 symbol holds 3 data numbers and has 5
error correction numbers.

11

12

Data Matrix Capacity

Schedule

13

• IUID and the Data Matrix

• Encoding Data into a Barcode
• Error Correction and Recovering Data

• Drawing the Data Matrix

• When is a Data Matrix Not an IUID

• Printing a Barcode

• Choosing and Using Barcode Readers

Error Correction Notional Idea

14

Assume you have 2 points - let’s
say (1,2) and (1,3).

We can plot them on a 2-
dimensional graph as shown.

(1,2)

(2,3)

Error Correction Notional Idea

15

We can then make a unique line
through those two points as
shown.

Suppose we over-determine the
line by adding add yet another
point to our line - let’s say (3,4).

(1,2)

(2,3)

Error Correction Notional Idea

16

We can now plot the all of the dots
that fall on our line.

The first dot, we will call our data and
the other two dots we will call our
error correction information.

(1,2)

(2,3)

(3,4)

Data to encode: 2, 3, 4

Error Correction Notional Idea

17

If the data becomes damaged,
represented by the point (2,7), it
is easy to determine which data
is wrong and what its value
should be. [(2,7) should really be
(3,4)]

However, If there are too many
points damaged, it would be
impossible to determine the
line.

(1,2)

(2,3)

(2,7)

Note: It doesn’t matter if the damage is in the data or the error correction

Error Correction Notional Idea

18

For 3 data points we would have
to use a 3-dimensional graph.

The 3 points are unlikely to lie in
a line, but they will always be
able to define a plane in 3
dimensions.

Error Correction Notional Idea

19

For 3 data points we would have
to use a 3-dimensional graph.

The 3 points are unlikely to lie in a
line, but they will always be able
to define a plane in 3 dimensions.

And these 3 points can always
define a circle within this plane.

The error correction data are then
chosen to lie on this circle.

More data points require more dimensions…which gets harder to show.

Encoding Example

• To illustrate how data and error correction gets
into a data matrix, we choose to encode the
data “3R60”.

• This is done by first converting the data to a
numeric form by using its ASCII representation.

20

Encoding Example

21

52 83 190 0 0 0 0 0

First we write down the series of numbers we want to encode and append 0 for each
of the required error correcting byte required.

Will be Error Correction Data Data

Next we use mathematical algorithms to generate the error correcting bytes from our data.
This math can become quite involved. We have given all of the mathematical details in the
backup slides if you are interested.

Programs that create data matrices can do all of the required math in a very short time.

Encoding Example

22

52 83 190 203 219 192 191 177

The computer will generate the following codes and append them to the data we
Want encoded. This will form the data that will be encoded into the data matrix.

Error Correction Data Data

Schedule

23

• IUID and the Data Matrix

• Encoding Data into a Barcode
• Error Correction and Recovering Data

• Drawing the Data Matrix

• When is a Data Matrix Not an IUID

• Printing a Barcode

• Choosing and Using Barcode Readers

Encoding Example

• To determine our error correction numbers and to
encode them, we need to use numbers a computer
can use.

• Normally, counting is based on something tangible
you understand.

– People understand 10 fingers and their counting is based
on this.

– Electronic machines understand electricity being on or off.
(the proverbial 1s and 0s represent electricity being on and off respectively).
Computer counting is based on these 2 states of electricity.

• The computer way of counting is called “Binary”.

24

Encoding Example

Here is how our message looks in 8 bit binary form.

 52 = 00110100

 83 = 01010011

 190 = 10111110

 203 = 11001011
 219 = 11011011
 192 = 11000000
 191 = 10111111
 177 = 10110001

25

Encoding Example

• Now map each binary number into a “Utah”

 52 = 00110100

26

8 7

6 5

3 2

4

1

= 1

= 0

Encoding Example

• Now map each binary number into a “Utah”

 52 = 00110100

27

= 1

= 0

Encoding Example

• Here are all of the “Utahs” for our data matrix

52 = 00110100 = 219 = 11011011 =

83 = 01010011 = 192 = 11000000 =

190 = 10111110 = 191 = 10111111 =

203 = 11001011 = 177 = 10110001 =

28

Putting it All Together in a Data Matrix

29

The Data Matrix Standard (ISO/IEC 16022)
provides a map for the data placement

The Finished Barcode for 3R60

30

End-to-End Big Picture

An example of different encoding algorithms
for Data Matrix symbols:

Encode the data “3R60” into a Data Matrix

31

Default

Encoding

(ASCII)

C40 Text Base 256

The data matrices can look different and still decode the same

Schedule

32

• IUID and the Data Matrix

• Encoding Data into a Barcode
• Error Correction and Recovering Data

• Drawing the Data Matrix

• When is a Data Matrix Not an IUID

• Printing a Barcode

• Choosing and Using Barcode Readers

Can You Spot the IUID?

33

Each one is a data matrix, but only one is an IUID

An IUID is always a data matrix
A data matrix is not always an IUID

Turning a Data Matrix into an IUID

 [)>R/S06G/S7LN41164G/S1PT123G/SS531R/S
EOT

34

Unique Item Identifier (UII) : LDN41164T123531

The right information

encoded into the right

kind of mark

Serial Number:

Data Identifiers:

Part Number:

Format Code:

Enterprise Identifier:

Syntax

Data Constraints when Encoding for IUID

35

3 formats are allowed for constructing an IUID-compliant Data Matrix:
• Application Identifiers (AI) (Format Code 05)
• Data Identifiers (DI) (Format Code 06)
• Text Element Identifiers (TEI) (Format Code 12)

In general, the following restrictions apply to data elements in an
IUID-compliant Data Matrix:
• Issuing Agency Code (IAC) ≤ 3 characters
• Enterprise Identifier (EID) ≤ 13 characters
• Original Part Number or Lot or Batch ≤ 32 characters
• Serial Number ≤ 30 characters

But there are exceptions…

Data Constraints when Encoding for IUID

36

And the exceptions are:

If using DIs:
• 18S ≤ 25 characters

If using TEIs:
• LOT ≤ 15 characters
• LTN ≤ 15 characters
• BII ≤ 5 characters
• PNO ≤ 15 characters
• UID ≤ 45 characters

For more information on the data elements to construct an IUID-
compliant Data Matrix, see MIL-STD 130

• UST ≤ 20 characters
• USN ≤ 20 characters
• SEQ ≤ 15 characters
• SER ≤ 15 characters
• UCN ≤ 15 characters

Minimizing the Data Matrix Size

Sometimes, space for marking is limited, but the required data
elements, syntax, and structure for an IUID-compliant Data Matrix
cannot be compromised

Macro 05 (for AI) and Macro 06 (for DI) can help!

Macro 05 and 06 are each a single character which takes the place of
9 others ([)>R/S05G/S or [)>R/S06G/S in the beginning and R/S

EOT at the
end)

For example, instead of encoding

 [)>R/S06G/S7LN41164G/S1PT123G/SS531R/S
EOT

We could use Macro 06 to encode
 [Macro06]7LN41164G/S1PT123G/SS531

37

A UII by Any Other Symbol Would Be Just as Unique

Each of the following symbols decodes into
the same UII: LDN41164T123531

38

[Macro06]25SLDN41164T123531

[)>R/S06G/S 7L41164G/S1PT123G/SS531R/S
EOT

This one encodes the individual data elements

[)>R/S06G/S25SLDN41164T123531R/S
EOT

This one encodes the complete UII

This one encodes the complete UII and uses Macro 06 (the most
compact encoding available)

The data matrices can look different and still decode the same

Schedule

39

• IUID and the Data Matrix

• Encoding Data into a Barcode
• Error Correction and Recovering Data

• Drawing the Data Matrix

• When is a Data Matrix Not an IUID

• Printing a Barcode

• Choosing and Using Barcode Readers

40

Anatomy of a Label

Top Coat Face Stock

Adhesive

Liner

Optional layer

Added by the manufacturer,

Can help overcome:

UV, chemicals, abrasion problems

Paper

Polypropylene

Polyester

Polyolefin

Thousands of choices!

3 major categories

• Rubber PSA

• Acrylic PSA

• Silicone PSA

“Ink”

Paper or film

 Moisture stability important

 to minimize edge curl

 Comes with release coating

Inkjet

Toner

Direct Thermal

Thermal Transfer

 Wax

 Wax/Resin

 Resin

Direct Laser

41

Readability Of The Mark

 Contrast

 Shape

 Cell Size

 Reflectance

Easy Read Hard Read

E
x
p
e
n
s
iv

e
 R

e
a
d
e
rs

C

h
e
a

p
 R

e
a

d
e

rs

42

Verification

Contrast

Fixed Pattern

Damage

Axial

Non-uniformity

Grid

Non-uniformity

Modulation

Unused

Error Correction

Over-print Under-print

Verification grades (“A”–“F”) eight characteristics of the mark

Grades of “B” or higher are required to pass the mark

43

A Readable, Failing Mark

OVER PRINT

UNDER PRINT

CLOCKING PATTERN

DAMAGE

FINDER PATTERN

DAMAGE

Application of the Labels

Multiple identical marks can be applied to an item

Easily Read

(when in service)

Protected Easily Read

(when boxed)

Schedule

45

• IUID and the Data Matrix

• Encoding Data into a Barcode
• Error Correction and Recovering Data

• Drawing the Data Matrix

• When is a Data Matrix Not an IUID

• Printing a Barcode

• Choosing and Using Barcode Readers

Barcode Readers

What To Look For In A Barcode Reader

1. Barcode Compatibilities (Data Matrix, PDF417, Code39,
Code128)

2. Mature Software (Upgradeable Firmware)

3. High Density CCD
(Charged Couple Device)

4. Durability

5. Good Lighting Features (for DPM)

6. Multiple Focal Lengths

7. Data Transfer (Tethered, Batch, Blue Tooth, RF)

8. Data Processing/Computing

Scanner

48

 Targeting and Reading

 Angle
• Optimal: 65 degrees
• Optimal Range: 45-65 degrees
• Range: 35-90 degrees
 Depends on mark and ambient lighting

45o

65o

90o

49

 Targeting and Reading

 Distance
• Optimal distance - 4” from symbol
• Optimal range: 2 – 6 inches

SWIPE

 ‘Center’ scanner and press
trigger button

50

 Scanner Programming

Configuration Symbol/Programming Code
Examples:

Clear All XML
Rules

Clear All Stored
Data

Save Settings

Data Matrix Rectangle On

 Volume

High Low Off

51

Keyboard Wedge and NMCI

Keyboard wedge allows scanners, plugged into
USB ports, to interact with software on the host
computer as if they were a keyboard.

Under NMCI, USB devices which do not require
“drivers” to be installed, can interact with an NMCI
computer as if they were a keyboard.

This allows applications like Word, Excel, Access, etc.
to easily incorporate barcode scanners in their
business processes.

IUID Resources

52

OSD UID Policy Office Website www.uniqueid.org
 Trusted site for policy, updates, FAQs, and IUID newsletter

DoN IUID Website
https://acquisition.navy.mil/rda/home/acquisition_one_source/item_unique_identification_iuid

MIL-STD 130 (current version is N, Change 1 as of Nov 2012)
 Marking standards and requirements

DoD Guide to Uniquely Identifying Items (currently v2.5 as of Sep 2012)
 Business rules, additional guidance for legacy items

IUID Toolkit www.iuidtoolkit.com
 Role based roadmaps for IUID implementation

Defense Acquisition University (DAU) www.dau.mil
 Continuous Learning Courses (CLM200, CLE 040) to increase IUID knowledge

IUID Helpdesk iuid.helpdesk@dla.mil

http://www.uniqueid.org/
https://acquisition.navy.mil/rda/home/acquisition_one_source/item_unique_identification_iuid
http://www.iuidtoolkit.com/
http://www.dau.mil/
mailto:iuid.helpdesk@dla.mil

QUESTIONS

&

 ANSWERS

53

The Basics of Binary Counting

54

20 21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

4 + 2 = 6

128 = 128

8,192 + 4,096 + 128 + 2 = 12,418

8 + 4 + 2 + 1 = 15

E
x
a

m
p
le

 B
in

a
ry

 N
u
m

b
e
rs

IUID Uses 8 bit Binary Numbers

• For IUID purposes it is necessary to consider limits
imposed by 8 positions. (This is a little arbitrary, but
is based mostly on historic work.)

• With 8 binary digits there are 256 different numbers
with an upper limit of 255.

55

00000000 = 0

00000001 = 1

00000010 = 2

00000011 = 3

00000100 = 4

00000101 = 5

00000110 = 6

00000111 = 7

00001000 = 8

11110111 = 247

11111000 = 248

11111001 = 249

11111010 = 250

11111011 = 251

11111100 = 252

11111101 = 253

11111110 = 254

11111111 = 255

20
21

22

23

00010000 = 16

00100000 = 32

01000000 = 64

10000000 = 128

24

25

26

27

…

…

…

…

…

0 – 255 is a Small Universe

• When limited to 256 numbers you must be careful with
math that takes you outside your universe.
(e.g. 25 x 25 = 625…how does that work?)

• For Data Matrix construction an established and agreed
upon set of ways to do math is as follows:

– Use an “exclusive or” (XOR) function when combining
numbers. (details to follow)

– Use a “MOD301” function to bring big numbers back into the
universe.

56

XOR

• Exclusive OR compares two bits and produces
a “1” if they are different and a “0” if they are
the same.

• We use the symbol  for this operation.

 1 0 0 1 0 1 1 0 1

  0 0 1 1 0 1 1 0 0

 1 0 1 0 0 0 0 0 1

57

XOR

• Exclusive OR compares two bits and produces
a “1” if they are different and a “0” if they are
the same.

• We use the symbol  for this operation.

 1 0 0 1 0 1 1 0 1

  0 0 1 1 0 1 1 0 0

 1 0 1 0 0 0 0 0 1

58 D
if
fe

re
n

t

S
a

m
e

D
if
fe

re
n
t

S
a

m
e

S
a

m
e

S
a

m
e

S
a

m
e

S
a

m
e

D
if
fe

re
n

t

MOD301

• When you have a number bigger than 255

 (Lets take 25 x 25 = 625 = 1001110001 as an example)

• Use the binary form of 301 = 100101101

• Shift the binary 301 so that the left most 1 lines up
with the left most 1 of the number which is too big

• Fill in any empty spaces with zeros

• XOR the two binary numbers

• Convert the result back to decimal 32+8+2+1 = 43

 (If the result is bigger than 255, MOD301 it again.)
59

1001110001
100101101

1001110001
1001011010

1001110001
1001011010

0000101011



Back to Error Correction Numbers

We know we need 5 error correction numbers
which are generated from our 3 data numbers.

To find the error correction numbers we use a
set of 5 other numbers: 62, 111, 15, 48, 228.
We call these our “generating numbers”.

(These seem sort of random but if you want 5 error
correction numbers you always use these same 5
numbers. How to calculate them is in the backup slides.
For now we are just going to use them.)

 60

Encoding Example

61

52 83 190 0 0 0 0 0

First we write down the series of numbers we want to encode and append 0 for each
of the required error correcting byte required.

Will be Error Correction Data Data

Next we use mathematical algorithms to generate the error correcting bytes from our data.
This math can become quite involved. We have given all of the mathematical details in the
backup slides if you are interested.

Programs that create data matrices can do all of the required math in a very short time.

Encoding Example

62

52 83 190 0 0 0 0 0

First write down the series of numbers to encode but use a 0 for each ECC number
Will be Error Correction Data Data

Next start at the left and multiply each data number by your generating numbers
then XOR it with the data number just to the right. (Remember to MOD301 numbers
when they get too big.)

52 x 62 = 3224

52 x 111 = 5772

52 x 15 = 780

52 x 48 = 2496

52 x 228 = 11856

 3224 MOD301 = 108

 5772 MOD301 = 179

 780 MOD301 = 1

 2496 MOD301 = 89

11856 MOD301 = 247

G
e
n
e
ra

ti
n
g

N
u
m

b
e
rs

52 83 190 0 0 0 0 0

 108 179 1 89 247

Encoding Example

63

52 83 190 0 0 0 0 0

First write down the series of numbers to encode but use a 0 for each ECC number
Will be Error Correction Data Data

Next start at the left and multiply each data number by your generating numbers
then XOR it with the data number just to the right. (Remember to MOD301 numbers
when they get too big.)

52 83 190 0 0 0 0 0

 108 179 1 89 247 0 0

 63 13 1 89 247 0 0


Encoding Example

64

52 83 190 0 0 0 0 0

First write down the series of numbers to encode but use a 0 for each ECC number
Will be Error Correction Data Data

Next start at the left and multiply each data number by your generating numbers
then XOR it with the data number just to the right. (Remember to MOD301 numbers
when they get too big.)

52 83 190 0 0 0 0 0

 108 179 1 89 247 0 0

 63 13 1 89 247 0 0

 243 13 104 164 21



83 x 62 = 5146

83 x 111 = 9213

83 x 15 = 1245

83 x 48 = 3984

83 x 228 = 18924

 5146 MOD301 = 243

 9213 MOD301 = 13

 1245 MOD301 = 104

 3984 MOD301 = 164

18924 MOD301 = 21

G
e
n
e
ra

ti
n
g

N
u
m

b
e
rs

Encoding Example

65

52 83 190 0 0 0 0 0

First write down the series of numbers to encode but use a 0 for each ECC number
Will be Error Correction Data Data

Next start at the left and multiply each data number by your generating numbers
then XOR it with the data number just to the right. (Remember to MOD301 numbers
when they get too big.)

52 83 190 0 0 0 0 0

 108 179 1 89 247 0 0

 63 13 1 89 247 0 0

 243 13 104 164 21

 254 15 49 83 21 0





Encoding Example

66

52 83 190 0 0 0 0 0

First write down the series of numbers to encode but use a 0 for each ECC number
Will be Error Correction Data Data

Next start at the left and multiply each data number by your generating numbers
then XOR it with the data number just to the right. (Remember to MOD301 numbers
when they get too big.)

52 83 190 0 0 0 0 0

 108 179 1 89 247 0 0

 63 13 1 89 247 0 0

 243 13 104 164 21

 254 15 49 83 21 0

 199 234 147 170 177





190 (62, 111, 15, 48, 228) MOD301 =
Generating

Numbers

Encoding Example

67

52 83 190 0 0 0 0 0

First write down the series of numbers to encode but use a 0 for each ECC number
Will be Error Correction Data Data

Next start at the left and multiply each data number by your generating numbers
then XOR it with the data number just to the right. (Remember to MOD301 numbers
when they get too big.)

52 83 190 0 0 0 0 0

 108 179 1 89 247 0 0

 63 13 1 89 247 0 0

 243 13 104 164 21 0

 254 15 49 83 21 0

 199 234 147 170 177

 203 219 192 191 177







Encoding Example

68

52 83 190 203 219 192 191 177

First write down the series of numbers to encode but use a 0 for each ECC number
Will be Error Correction Data Data

Next start at the left and multiply each data number by your generating numbers
then XOR it with the data number just to the right. (Remember to MOD301 numbers
when they get too big.)

52 83 190 0 0 0 0 0

 108 179 1 89 247 0 0

 63 13 1 89 247 0 0

 243 13 104 164 21 0

 254 15 49 83 21 0

 199 234 147 170 177

 203 219 192 191 177







Encoding Example

Here is how our message looks in 8 bit binary form.

 52 = 00110100

 83 = 01010011

 190 = 10111110

 203 = 11001011
 219 = 11011011
 192 = 11000000
 191 = 10111111
 177 = 10110001

69

70

How to Calculate the “Generating Numbers”

….and so on…

Because we know we want 5 generating numbers we start with a polynomial with 5 terms

like this

Then we multiply it

out like a normal

polynomial except

we XOR instead of

add and we MOD301

any number over 301

71

The terms of

the 5th degree

polynomial

separate out

into the following

terms.

How to Calculate the “Generating Numbers”

72

This is the first of

our generating numbers.

32 = 100000

16 = 010000

 110000

8 = 001000

 111000

 4 = 000100

 111100

 2 = 000010

 111110 = 62









Each term will be separated out and handled on its own slide

because of space limitations. Here is the work for the x4 term.

How to Calculate the “Generating Numbers”

73

Because we will XOR these

terms and we know any two

terms of the same value will

have identical binary forms

– we cancel these pairs.

The 512 is a problem

because it is too big, so we

need to MOD301 it.

90 = 1011010

256 = 100000000

 101011010

16 = 000010000

 101001010

 8 = 000001000

 101000010

301= 100101101

 001101111









1101111 = 64+32+8+4+2+1 = 111

This is our second

generating number.

512 = 1000000000

301 = 100101101

 1011010



How to Calculate the “Generating Numbers”

74

2048 MOD301 = 69

4096 MOD301 = 138
 64 = 01000000

128 = 10000000

 11000000

69 = 01000101

 10000101

138 = 10001010

 00001111







00001111 = 8+4+2+1 = 15
This is our third

generating number.

How to Calculate the “Generating Numbers”

75

 1024 MOD301 = 180

 2048 MOD301 = 69

 4096 MOD301 = 138

 8192 MOD301 = 57

16384 MOD301 = 114
180 = 10110100

 69 = 01000101

 11110001

138 = 10001010

 01111011

57 = 00111001

 01000010

114 = 11110010

 00110000

00110000 = 32+16 = 48

This is our fourth

generating number.









How to Calculate the “Generating Numbers”

76

32768 = 1000000000000000

 301 = 1001011010000000

 0001011010000000

 301 = 1001011010000

 0010001010000

 301 = 10010110100

 00011100100

32768 MOD301 = 228

00011100100 = 128+64+32+4 = 228

3
2
7
6
8
 M

O
D

3
0
1
 in

d
e
ta

il th
is

 tim
e

T
h
e
 re

d
 z

e
ro

s
 a

d
d
e
d

a
s
 p

la
c
e
 h

o
ld

e
rs

This is our last

generating number.

How to Calculate the “Generating Numbers”

End-to-End Big Picture

An example of different encoding algorithms
for Data Matrix symbols:

Encode the data “3R60” into a Data Matrix

77

Default

Encoding

(ASCII)

C40 Text Base 256

The data matrices can look different and still decode the same

• ERGO; A Latin word meaning "therefore" as in Cogito ergo sum.

• 3R60;

78

R 3 60
Single number

ASCII conversion 51 82 No single number

ASCII conversion

Default ECC200

Data Matrix data

Encoding

51+1 82+1 60 + 130

Data to map into

our Data Matrix 52 83 190

Data in binary form 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0

Translated into

“Utah” form

Data Qualifiers for IUID Usage

79
From MIL-STD 130N Change 1, Table VI.

Data Element

DI
ISO/IEC 15418

AI
GS1 General

Specifications

TEI
A4A CSDD

Enterprise Identifier
• CAGE/NCAGE
• D-U-N-S
• GS1 Company Prefix
• DODAAC
• Other Agencies

17V
12V
3V
7L

18V

-
-
-
-
-

MFR , SPL , or CAG

DUN
EUC

-
-

Serial Number within Enterprise Identifier - - SER or UCN

Serial Number within Original PIN or within
Lot/Batch Number

S - SEQ

Original PIN 1P - PNO

Lot/Batch Number 1T - LOT , LTN , OR BII

UII Data Set (single element)
• Complete UII
• UII not including the IAC (CAGE + Serial
Number within CAGE)
• IUID Equivalents
 - VIN
 - ESN/MEID/CMTI
 - GRAI
 - GIAI

25S
18S

I

22S
-
-

-
-

-

8002
8003
8004

UID

USN or UST

-
-
-
-

